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Abstract Non-homogeneous velocity distribution of the flow in the channel of a
single-screw extruder is taken into account by a new model developed on the basis of
the Markov chains. This model allows calculating the Residence Time Distribution
(RTD) as well as the influence of the operating conditions on the process at any velocity
distribution in the channel. It has been used to represent experimental results on mass
flow rate and RTD previously obtained by extrusion of an acrylic polymer, Eudragit
E100, at different temperatures and screw rotation speeds. The diffusion coefficient is
the only adjusting parameter of the model. It was shown that it does not depend on the
screw rotation speed and a correlation between this diffusion coefficient and the bar-
rel temperature was found. The model provides global understanding of the transport
kinetics of the flowing material through the extruder according to its behaviour and
better describes the progress of the polymer flow all along the barrel from the hopper
to the die.

Keywords Extrusion · Mathematical modelling · Markov chain ·
Polymer processing · Residence time distribution

D. Ponomarev · E. Rodier · M. Sauceau · C. Nikitine · J. Fages (B)
Ecole des Mines d’Albi, RAPSODEE Research Centre, CNRS,
Université de Toulouse, 81013 Albi, France
e-mail: Jacques.Fages@mines-albi.fr

C. Nikitine
CPE-LGPC, UMR 2214, Université de Lyon, 69100 Villeurbanne, France

D. Ponomarev · V. Mizonov
Department of Applied Mathematics, Ivanovo State Power Engineering University,
Rabfakovskaya 34, 153003 Ivanovo, Russia

123



2142 J Math Chem (2012) 50:2141–2154

Nomenclature
a Coefficient of the homographic equation (m/s)
b Coefficient of the homographic equation (m2/s)
B Distance between flanks (m)
d Diameter of the screw (m)
dz Transition probability along the axis z (–)
dy Transition probability along the axis y (–)
D Diffusion coefficient (m2/s)
Db Internal diameter of the barrel (m)
e Width of the screw flank (m)
E(i) Calculated residence time distribution (–)
Eexp(t) Experimental residence time distribution (–)
g Coefficient of the homographic equation (m)
gz The down channel pressure gradient (Pa/m)
H Cross channel depth (m)
j The transition number (–)
L Length of the screw shaft (m)
L f Length of the die (m)
Ls Length of the channel (m)
Lt Total path length (m)
m Row number (–)
M Mass of material in the extruder (kg)
n Column number (–)
P Matrix of transition probabilities (–)
Pik Matrix of transition probabilities from kth to i th columns
Q Mass flow rate (kg/s)
r Throttle ratio (–)
S State vector (–)
t Time at which the calculated results are obtained (s)
T Temperature of the barrel (◦C)
v Transition probability describing convection (–)
Vz Average velocity along the axis z (m/s)
Vex Free volume of the extruder (m3)
W Channel width (m)
Z Zero matrix (–)

Greek symbols
�t Time interval (s)
�texp Experimental time of sampling (s)
�y Height of a cell (m)
�z Length of a cell (m)
ρ Average density of the material (kg/s)
μ Viscosity (Pa s)
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1 Introduction

Extrusion is a process for converting a raw material into a product of uniform shape
and density by forcing it through a calibrated orifice called a die under controlled con-
ditions [1]. Material transport is achieved by one or two Archimedes screws rotating
inside a barrel, where pressure, produced by the rotating screw, forces material flow
through the die. Industrial applications of the polymer extrusion process date back to
the 1930s. It has been extensively applied in thermoplastic, food and rubber industries.
Recently, extrusion has proved to be a promising manufacturing process for polymer
foam production with the use of CO2 at supercritical conditions [2].

Several phenomena influence the characteristics of the final product and the global
comprehension of extrusion is far from being reached [3]. Therefore, researches in this
field can follow several directions [4,5]. One of them is the study of residence time
distribution (RTD) of the matter under different operating conditions and its model-
ling in order to understand and better control the material flow along the extruder and
through the die.

A research study on this subject has been described by Yeh and Jaw [6], and Singh
and Rizvi [7], where a model based on the combination of continuous stirred tank reac-
tors exchanging with stagnant zones and plug flow reactors in series was proposed. This
approach deals with the classical partial differential equation (PDE) describing mass
transport with dispersion-convection mechanisms. Dispersion mechanism occurrence
depends on the process modelled. In the reactor modelling theory, different solutions
of the PDE using Laplace transformation can be used. Convection and dispersion are
characterised by respectively v, the bulk mean velocity and D, the dispersion coeffi-
cient. By considering v = 0 and D �= 0, an equation for a continuously stirred tank
reactor can be obtained. On the contrary, if D = 0 and v �= 0, the equation applies to
a plug flow reactor. Even if there is no analytical solution to this equation, this method
allows fitting satisfactorily the experimental RTD data. However, models of this type
bear some weaknesses. They cannot take into account extra phenomena without being
drastically changed. They are difficult to apply when the dispersion and convection
coefficients depend on concentration, temperature or pressure. In this case, it is neces-
sary to get back to the original differential equations and to apply a numerical scheme
to solve them.

More detailed research on polymer extrusion has been reported by Rauwendaal
[1]. This author suggests that the velocity profile strongly depends on the phenomena
occurring due to visco-elastic behaviour of the melt, pressure and temperature vari-
ations. The extruder is divided into several phenomenological zones: solid transport,
melting (or metering) and pumping zones. The analysis is given on the velocity profile
evolution in each zone according to the process characteristics and material properties.
This approach remains very physical but requires sophisticated experimental work to
determine the process coefficients.

In addition, possibilities of making experimental study on what happens inside the
different zones of the extruder are often limited. Moreover, the rheological behaviour
of polymers is usually non-Newtonian, which makes tough the study of their flowing
features [8]. Most often, only integral process characteristics can be measured (for
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example, RTD, temperatures of the barrel and the matter in each zone, absolute value
of material pressure in the zones and mass flow rate).

If a more detailed research on the process is required than the analytical solu-
tions allow, it is necessary to develop numerical methods. Among them, a convenient
approach for writing balance equations is based on cell models employing the theory of
Markov chains [9,10]. One of its advantages is to make modelling processes in chemi-
cal engineering easier, because its matrix representation is straightforward to compute
with a classic programming language. In addition, it allows a local description of the
system by addressing in an explicit way the general case where the polymer velocity
is not homogeneously distributed over the cross section of the screw channel. In most
cases, this approach can be suitably linked with population balances, which mainly
concern systems experiencing changes in time and space and that can be discretised
as, for example, a flowing material along the screw of an extruder.

2 Cell model of the extruder

The basic structure of the single-screw extruder is described on Fig. 1. It consists of
the barrel containing a rotating Archimedes’ screw with a helical flight delimiting a
channel of variable depth.

A hopper is placed at the inlet of the barrel to provide constant feed of material. A
die of small diameter is located at the end of the extruder to shape the material upon
exiting the extruder. Each zone of the barrel is surrounded by a heater to warm up the
material. The raw material enters the extruder as granules, melts in the central part of
the barrel and is eventually forced through the die by the screw [11].

The geometrical parameters of the extruder are given in Table 1, where L is the
length of the screw and L f is the length of the die.

barrel screw 

hopper 

die transport fusion, 
plastification 

feed 
zone 

(a)
barrel screw 

(b)

Db

Fig. 1 Scheme of the extruder. a The extruder b Geometry of the screw (from [11])

Table 1 Geometry of the flow

Db (m) d (m) B (m) e (m) H (m) � (◦) L (m) L f (m)

3 × 10−2 2.7 × 10−2 3 × 10−2 3.5 × 10−3 1.5 × 10−3 17.66 1.0475 10−1
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Table 2 Geometry of the flow, additional parameters

Parameter Equation Value

Width of the channel, W (m) B · cos(�) − e 2.5 × 10−4

Channel length, Ls (m) L·π ·Db
B·cos(�)

3.45

Total path length (channel + die), Lt (m) Ls + L f 3.55

v1+dz

dz

dy
dy
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Fig. 2 2D cell space representing the kinetics of the flow

Some additional parameters of the experimental setup are given in Table 2.
For modelling purposes, the extruder volume is divided into a finite number of

discrete intervals. The flow channel is represented as a two dimensional [m, n] array
of cells (see Fig. 2): m index is for channel depth location (y axis) and n is for axial
location along the extruder between inlet and outlet (z axis).

The number of cells is taken as 18 in the horizontal direction (n) and 5 in the vertical
direction (m). The number of cells can be higher depending on the level of accuracy
required. The cell length is the channel length Ls divided by n and the cell width can
be calculated as the channel height H divided by m.

The last column of cells is an additional column that represents the product accu-
mulation volume straight after the extruder outlet. As far as the velocities are different
along the y axis, it is supposed that each row of cells represents a flow with the aver-
age velocity Vz(i) at z axial location, i being the number of the row in the vertical
direction. Each cell location corresponds to a state of the system, which describes the
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Fig. 3 Transition probabilities
in a cell (row from 2 to m − 1
and column from 2 to n − 1)

dy 

dz 

vz 

dy 

dz 1-2dy-2dz-vi 

probability for a tracer to be in the corresponding cell. A set of the probabilities forms
a state vector S, which has the size [mn, 1]:

S j =
[

S j
1 S j

2 . . . S j
m−1 S j

m S j
m+1 . . . S j

2m . . . S j
nm−1 S j

nm

]t
(1)

where superscript t means transposing a vector.
It is more convenient to number the cells like in Fig. 2 but, for further calculation,

it is necessary to consider the state vector in Eq. (1), in which all the columns of the
state matrix are placed one under another. What is the state of the process after a small
interval of time �t called the transition duration? In this case, the discrete current time
is:

t = �t · ( j − 1) (2)

During the j th transition the state vector changes and becomes S j+1. The sequence
of the state vectors is formed by the recurrent matrix equality:

S j+1 = P S j (3)

where P is the matrix of transition probabilities of the size (m × n) × (m × n). Its
general form is tridiagonal according to:

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P11 P12 Z . . . Z Z
P21 P22 P23 . . . Z Z
Z P32 P33 . . . Z Z
. . . . . . . . . . . . . . . . . .

Z Z Z . . . Pmn−1,mn−1 Pmn−1,mn

Z Z Z . . . Pmn,mn−1 Pmn,mn

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

where Z are zero matrices of the size [m × n], Pii are the transition matrices inside
i th column, Pik are the matrices of transition probabilities from kth to i th columns.

We suppose that, during �t , the transitions are allowed to the neighbouring cells
only. In each direction, the probabilities of the transitions are not equal. They can be
separated into a symmetric part that defines the pure diffusion and a non-symmetric
part that defines the convection transfer or transport of material. This procedure is
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shown in Fig. 3. The probability to stay within a cell during a transition is equal to
one minus the sum of the probabilities to leave the cell.

According to Fig. 2, the transition matrix P11 can be written as:

P11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − dy − dz − v1 dy 0 . . . 0 0
dz + v1 1 − 2dy − dz − v2 dy . . . 0 0
0 dz + v2 1 − 2dy − dz − v3 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 − 2dy − dz − vm−1 dy

0 0 0 . . . dz + vm−1 1 − dy − dz − vm

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

The same principle is implied for building other matrices Pii in accordance with the
scheme. The matrix of transition probability P12 is:

P12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

dz 0 0 . . . 0 0
0 dz 0 . . . 0 0
0 0 dz . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . dz 0
0 0 0 . . . 0 dz

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

The other matrices are constructed using this method. The elements on the main diag-
onal of matrices Pii are calculated to keep the condition of normalisation, which
requires that the sum of all probabilities in each column of the matrix P should be
1. This approach is quite convenient but it is necessary to take care that no negative
elements appear.

The velocity Vz (y) is different along the channel depth, and we can assign certain
value Vz(i) to each row of the cells. In order to define the distribution of Vz(i), the
following homographic function is taken:

Vz(y) = a · y + b

y + g
(7)

To determine the coefficients a, b and g, any function can be used, according to the
hydrodynamics theory for different flow regimes or experimental observations. The
total mass flow rate can be defined as:

Q = ρ · W ·
H∫

0

V z(y) · dy (8)

where ρ is the average density of the material obtained by the following equation:

ρ = M

Vex
(9)
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Fig. 4 Discrete distribution of
the velocity VZ in different rows

M is the total mass of material inside the extruder and Vex is its total free volume that
is the maximum available volume for the material inside the extruder.

By substitution of (7) in (8), we can obtain the balance equation for the mass flow
rate:

Q = ρW (aH + (b − ag) ln ((H + g)/g)) (10)

In order to find the values of the coefficients a, b and g, the boundary conditions:
Vz(0) = wr, Vz(h) = 0 and the balance Eq. (10) can be used.
Once the coefficients are found, a continuous function of velocity distribution can

be used over the depth of the channel. To apply this function to the Markov chain
model, we need the average values of the velocity for each cell according to the mean
value theorem. An example of the discrete distribution of the velocity in rows is shown
in Fig. 4.

This interval is determined by the cell height:

�y = H

m
(11)

The cell length is different from its height. It can be calculated by:

�z = 1

n − 1
·
(

π · D

cos(�)
· L

B
+ L f

)
(12)

The average velocity Vz(i) in the row i is the basis for a transition probability vi , which
has to be defined before modelling the process. The forward transition probability vi

can then be written as:
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vi = Vz(i)
�t

�z
(13)

According to the Fick’s first law, the relative part of mass transported by diffusion
from one cell to another can be written for the corresponding axis as:

dz = D
�t

�z2 (14)

dy = D
�t

�y2 (15)

where D is the diffusion coefficient of the tracer into the polymer. We consider an
isotropic diffusion, therefore D has the same value in both directions z and y.

The outflow can be calculated as a difference between the sum of states in the last
column after j and j + 1 transitions, according to:

E( j) =
mn∑

m(n−1)+1

(
S j+1

k − S j
k

)
(16)

Having the RTD, the mean residence time and variance can be easily calculated.
However, the set of data obtained from Eq. (16) must be adjusted to the set of exper-

imental data. Usually, the calculation procedure gives the mass outflow after each tran-
sition time, �t . The experimental curve gives the mass outflowing per time interval
�texp (the time of collecting a sample), which is not equal to �t . Thus, the results can-
not be compared directly and it is necessary to transform them to an identical time step.

3 Results and discussion

3.1 Experiments

The methods of experimentation as well as the experimental set up have been described
in details by Nikitine et al. [12]. The polymer used for these experiments was Eudragit
E100. First, the granules of polymer were introduced into the extruder hopper. As soon
as a steady state regime was established, mean polymer mass flow rate and filling rate
were measured by a mass balance. Then, a peak injection of a coloured tracer, eryth-
rosine, was done at the inlet of the extruder. Then, the polymer flowing out at the die
was cooled and cut every 10 s until the tracer disappearance. Afterwards, the samples
obtained were dissolved in ethanol and the tracer concentration was determined by an
UV-spectrophotometer. These experiments were made at different temperatures and
screw rotation speeds.

3.2 Mass flow rate and velocity distribution in the channel

The first experimental results were obtained on the mass flow rate [12]. The total mass
of polymer Eudragit E100 inside the extruder was 0.126 kg. The experiments on the
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Table 3 Model parameters and characteristics (experiments with the die of 3 mm in diameter)

Parameters of
the model

130 ◦C,
20 rpm

130 ◦C,
40 rpm

130 ◦C,
60 rpm

130 ◦C,
80 rpm

140 ◦C,
40 rpm

150 ◦C,
40 rpm

D(m2s−1) 10−10 10−10 10−10 10−10 3.5 × 10−10 4.5 × 10−10

Characteristics

Measured mass
flow rate Q (kg/s)

4.6 × 10−4 7.29 × 10−4 1.1 × 10−3 1.48 × 10−3 9.66 × 10−4 1.25 × 10−3

Mean time (M/Q) (s) 2.74 × 102 1.73 × 102 1.15 × 102 0.85 × 102 1.3 × 102 1.01 × 102

Experimental
mean time (s)

2.46 × 102 1.83 × 102 1.22 × 102 0.89 × 102 1.32 × 102 1.01 × 102

Calculated
variance (–)

0.1453 0.1792 0.1511 0.1245 0.2886 0.2245

Experimental
variance (–)

0.1519 0.1599 0.1545 0.1421 0.2283 0.1845

mass flow at different temperatures and different screw rotation speeds are shown in
Table 3. When the rotation speed or barrel temperature increased, the mass flow rate
also increased, as expected. The viscosity of the polymer decreases at higher tem-
peratures, which results in an enhanced mass flow rate. Higher rotation speed of the
screw causes higher pressure gradients that also increase the mass flow rate. Knowing
the total mass of material and the free internal volume of the extruder, 169.1 cm3, we
could calculate the density of material, which is 745.08 kg/m3. The velocity distribu-
tion in Eq. (7) with its mean values on the intervals, is calculated from the coefficients
determination according to Eq. (10) and to the boundary conditions mentioned earlier.

In addition, Rauwendaal [1] derived the coefficient r (throttle ratio) showing the
influence of the process parameters on the velocity distribution of the conveying or
pumping zone in the extruder:

r = H2

6μVz
(17)

This ratio r compares the importance of the backward “Poiseuille” axial flow due to
the pressure gradient to the forward shear flow due to velocity Vz . It means that, for
instance for r = 1/3, the forward flow is predominant all over the height of the chan-
nel and, for r = 2/3, some backward flow is present near the screw while a forward
flow exists near the barrel. This ratio may enlighten the relationships between flow
characteristics. It comes from the model that r decreases with temperature, that may
result from the fact that the down channel pressure gradient gz decreases faster than
the shear flow (μ, Vz).

3.3 Influence of the barrel temperature on RTD

Experimental residence time distribution can be represented using the following equa-
tion:

�Eexp(t) = �M j∑
j �M j

. (18)
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Fig. 5 RTD at 40 rpm and 130◦C. a Differential curve, b cumulative curve

Fig. 6 RTD at 40 rpm and 140◦C. a Differential curve, b cumulative curve

Fig. 7 RTD at 40 rpm and 150◦C. a Differential curve, b cumulative curve

where �M j is the tracer mass in the j th sample.
The RTD characteristics are shown in Figs. 5, 6 and 7 for the screw speed of 40 rpm

at 130, 140 and 150 ◦C respectively. The star symbols are used to represent the experi-
mental data and the open symbols represent the calculated results. As far as the model
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Fig. 8 Diffusion coefficient
versus temperature at the
rotation speed of 40 rpm

(a) (b)

R
T

D

(c)

0 100 200 300 400 500 600

time (s)

0 100 200 300 400 500 600

time (s)
0 100 200 300 400 500 600

time (s)

0.25

0.2

0.15

0.1

0

0.05

0.25

0.2

0.15

0.1

0

0.05

0.25

0.2

0.15

0.1

0

0.05

Fig. 9 RTD at 130◦C for different screw rotation speed. a 20 rpm, b 60 rpm, c 80 rpm

has one adjusting parameter, which is the diffusion coefficient D, the least square
method was used.

The values of calculated parameters and characteristics are given in Table 3. The
mean residence time decreases at higher temperature, viscosity also decreases result-
ing in an enhanced mass flow rate. The values of D are 10−10, 3.5 × 10−10 and
4.5 × 10−10 m2 s−1 for the temperatures 130, 140 and 150 ◦C respectively (see Fig. 8).

These values seem to be correlated to temperature values. Interpolated by a linear
function, these points follow:

D(T ) = 1.75 × 10−11T − 21.35 × 10−10 (19)

where 130 ◦C ≤ T ≤ 150 ◦C. The polymer viscosity decreases with temperature,
which results in higher values of the diffusion coefficient D. This suggests an enhanced
plug flow and this is consistent with the interpretation of the same experimental curves
as a combined continuous stirred tank reactor exchanging with stagnant zones and plug
flow reactor in series [12].
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3.4 Influence of the screw rotation speed on RTD

Several RTD characteristics are shown in Fig. 9 for the temperature 130 ◦C at 20, 60
and 80 rpm respectively. The values of calculated parameters and characteristics are
given in Table 3. It was found that the diffusion coefficient D hardly depends on the
rotation speed of the screw.

The evolution of the throttle ratio r in Eq. (17) is not so straight. Indeed, calcula-
tions show two opposite tendencies with the increase of the screw rotation speed: the
down channel pressure gradient gz increases and the viscosity μ diminishes (due to
higher shear rates), which suggests that the Poiseuille backward flow increases, while
the down channel velocity Vz increases.

The values of the mean residence time are the consequences of what has been men-
tioned above: the increase in the screw rotation speed enhances mass flow rate and
decreases viscosity (with higher shear rates) thus decreasing the mean residence time.

4 Conclusion and perspectives

Non-homogeneous crosswise velocity profile distribution of the flow in a single screw
extruder has been taken into account by a new model developed on the basis of Markov
chains. The volume of the extruder was represented as a two dimensional array of cells
exchanging material mass with their neighbours. The model describes the transport
of polymeric material along a horizontal extruder barrel and allows calculating con-
centration and RTD at its outlet. The main feature of the model developed allows to
link the transition probabilities with the physics of the process and, thus, the approach
becomes more physical. The model can be also used to predict RTD characteristics
within the experimental conditions domain without making additional experiments.
Velocity distribution is closely related to the rheological properties of the material.
Therefore, by knowing how changes in rheological properties may modify the velocity
distribution, it becomes possible to study how the flow characteristics change.

The diffusion coefficient D is the only adjusting parameter of the model. It appeared
that D does not depend on the screw rotation speed. An empirical correlation of D
versus temperature was obtained. The model developed can potentially be applied to
other flow processes where the velocity distribution is not homogeneous or where a
backward flow may occur.

As prospect, the velocity distribution in different zones could be very interesting
to measure. Modelling the heat exchange and phase transformations [13] is another
track for the model development. This would require though a more sophisticated
experimental set up to measure additional characteristics of the process.
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